
APPENDIX F. ATOMIC DATA

1. Theoretical Internal Conversion Coefficients

The following graphs provide selected theoretical conversion coefficients for M1, M2, M3, M4, E1, E2, E3, and E4 transitions to an accuracy of 3% to 5%. For atomic numbers Z=3, 6, 10, and 20, the graphs show K-shell and L-subshell conversion coefficients from Band et $al.^1$ For Z=30 through Z=100, they show K-shell, L- subshell, and total conversion coefficients from calculations by Rösel et $al.^2$

Smooth curves have been drawn through the calculated data points by using a cubic spline fit to the logarithms of both energy and conversion coefficient. Discontinuities in the plots of total conversion coefficients occur at the binding energies of the K atomic shells, and the graphs at these energies indicate only the change in the conversion coefficient due to the presence of the K-shell edge. One should be aware that the cubic spline fit may not adequately represent this region and interpolation near the K-shell edge may be unreliable.

The K binding energies used by Rösel *et al* 2 for calculating conversion coefficients are from Bearden and Burr. The newer and generally more precise K binding energies of Porter and Freedman are somewhat different and, for some elements with $Z \ge 84$, differ by more than 2 keV. One should be aware that these differences may significantly affect conversion coefficients near the K binding energy.

^{1.}M. Band, M.B. Trzhaskovskaya, and M.A. Listengarten, At. Data and Nucl. Data Tables 18, 433 (1976).

²F. Rösel, H.M. Fries, K. Alder, and H.C. Pauli, At. Data and Nucl. Data Tables 21, 91 (1978); 21, 291 (1978).

³J.A. Bearden and A.F. Burr, Rev. Mod. Phys. 39, 125 (1967).

⁴F.T. Porter and M.S. Freedman, J. Phys. Chem. Ref. Data. 7, 1267 (1978).

⁵M.R. Schmorak, private communication (1982).